Pentaglutamate Derivatives of Folate as Substrates for Rat Liver Tetrahydropteroylglutamate Methyltransferase and 5,10-Methylenetetrahydrofolate Reductase

Author:

Cheng F. W.,Shane B.,Stokstad E. L. R.

Abstract

Tetrahydropteroylglutamate methyltransferase (EC 2.1.1.13) and 5,10-methylenetetrahydrofolate reductase (EC 1.1.1.68) were purified more than 100-fold from rat liver. The specificity of each enzyme for 5-methyl-H4PteGlu and 5-methyl-H4PteGlu5 did not change throughout the purification procedures.A comparison of enzyme properties as well as kinetic analysis showed that pteroylmono- and pentaglutamates were binding to the same enzyme in each case. There was no evidence of any pteroylpentaglutamate specific methyltransferase or reductase in rat liver.(+)-5-Methyl-H4PteGlu5 was a more effective substrate for the methyltransferase (Km ~ 4 μM) and reductase (Km ~ 3 μM), at low substrate concentrations, than (+)-5-methyl-H4PteGlu (Km ~ 13 μM and ~ 23 μM, respectively), although V values were lower. High levels of the pentaglutamate substrate inhibited the reductase reaction (Ki ~ 40 μM). The unnatural (−)-5-methyl-H4PteGlu1,5 diastereoisomers were not inhibitors of either enzyme.The results suggest that any 'methyl trap' operating at the monoglutamate level under conditions of vitamin B12 deprivation would be at least as effective at the pentaglutamate level.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5-Methyltetrahydrofolate-homocysteine S-methyltransferase;Enzyme Handbook 11;1996

2. 5,10-Methylenetetrahydrofolate reductase (FADH2);Enzyme Handbook 7;1994

3. Folylpolyglutamate Synthesis and Role in the Regulation of One-Carbon Metabolism;Vitamins & Hormones;1989

4. Reduced folates and fluoropyrimidine antitumor efficacy;Cancer Chemotherapy: Concepts, Clinical Investigations and Therapeutic Advances;1989

5. Characteristics of thymidylate synthase purified from a human colon adenocarcinoma;Archives of Biochemistry and Biophysics;1988-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3