SEMIEMPIRICAL SCF CALCULATIONS ON AZULENE AND ITS SINGLY CHARGED IONS

Author:

Bloor J. E.

Abstract

SCF MOs for azulene have been obtained by the semiempirical Pariser, Parr, Pople procedure using the Nishimoto–Mataga method of calculating repulsion integrals and the assumption that nearest neighbor resonance integrals are independent of interatomic distance. Excited states calculated from these MOs by a CI calculation are in very good agreement with experiment. Ground state charge densities, bond orders, and the dipole moment are similar to other SCFMO calculations and reveal no disadvantage in adopting a constant resonance integral for all bonds. It is shown that estimates of the π-electron charge density by n.m.r. methods are not compatible with direct dipole moment measurements and it is suggested that the interpretation of the n.m.r. measurements suffers from inaccuracies in estimating ring currents. Doubt is also thrown on the use of simple relationships between calculated π-bond orders and bond lengths obtained by X-ray crystallographic measurements on the solid state, particularly since all the bond lengths in azulene are predicted to be longer than in benzene whereas experiment shows some to be shorter. Calculations on spin densities and charge densities of the singly charged azulene anion and cation have been performed by a restricted Hartree–Fock perturbation method in which the matrix elements for the interaction between singly excited states and the ground state are calculated using the closed shell SCFMOs of azulene as the basis set. Agreement with experiment for the anion is fairly good. For the cation our results are in severe disagreement with recent VB calculations, but there are no experimental results available to decide between the two methods.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3