A histological examination of the holding sacs and glandular scent organs of some bat species (Emballonuridae, Hipposideridae, Phyllostomidae, Vespertilionidae, and Molossidae)

Author:

Scully William MR,Fenton M B,Saleuddin A SM

Abstract

Using histological techniques at the light-microscope level, we examined and compared structure and sexual dimorphism of the wing sacs and integumentary glandular scent organs of 11 species of microchiropteran bats. The antebrachial wing sacs of the Neotropical emballonurids Peropteryx macrotis, Saccopteryx bilineata, and Saccopteryx leptura differed in size and location but lacked sudoriferous and sebaceous glands, confirming that they were holding sacs rather than glandular scent organs. Glandular scent organs from 11 species consisted of sebaceous and (or) sudoriferous glands in emballonurids (P. macrotis, S. bilineata, S. leptura, Taphozous melanopogon, Taphozous nudiventris), hipposiderids (Hipposiderous fulvus, Hipposiderous ater), the phyllostomid Sturnira lilium, the vespertilionid Rhogeessa anaeus, and molossids (Molossus ater and Molossus sinaloe). Glandular scent organs were located on the face (H. fulvus, H. ater), gular region (S. bilineata, P. macrotis, T. melanopogon, M. ater, M. sinaloe), chest (T. nudiventris), shoulder (S. lilium), or ears (R. anaeus). Glandular scent organs showed greater similarities within than between families, and typically were rudimentary or lacking in females. Scanning electron microscope examination revealed that the hairs associated with glandular areas of male T. melanopogon were larger and had a different cuticular-scale pattern than body hairs. These were osmetrichia, hairs specialized for holding and dispersing glandular products. In S. lilium, hairs associated with the shoulder scent-gland area were larger than body hairs but similar in cuticular-scale pattern.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3