Author:
Mudge Joann,Huihuang Yan,Denny Roxanne L,Howe Dana K,Danesh Dariush,Marek Laura F,Retzel Ernie,Shoemaker Randy C,Young Nevin D
Abstract
Surveying the soybean genome with 683 bacterial artificial chromosome (BAC) contiguous groups (contigs) anchored by restriction fragment length polymorphisms (RFLPs) enabled us to explore microsyntenic relationships among duplicated regions and also to examine the physical organization of hypomethylated (and presumably gene-rich) genomic regions. Numerous cases where nonhomologous RFLPs hybridized to common BAC clones indicated that RFLPs were physically clustered in soybean, apparently in less than 25% of the genome. By extension, we speculate that most of the genes are clustered in less than 275 M of the soybean genome. Approximately 40%–45% of this gene-rich portion is associated with the RFLP-anchored contigs described in this study. Similarities in genome organization among BAC contigs from duplicate genomic regions were also examined. Homoeologous BAC contigs often exhibited extensive microsynteny. Furthermore, paralogs recovered from duplicate contigs shared 86%–100% sequence identity.Key words: Glycine max, bacterial artifical chromosome, restriction fragment length polymorphism, genome duplication, gene distribution.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献