Development and evaluation of an automation algorithm for a time-domain reflectometry bridge scour monitoring system

Author:

Yu X. B.1,Yu X.1

Affiliation:

1. Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106-7201, USA.

Abstract

Bridge scour is a major threat to the safety of bridges. There is a high risk of scour-induced damage due to the catastrophic nature of bridge foundation failure. The development of an innovative bridge scour monitoring system is a pressing task for the research community. Such a system needs to be fieldworthy, which is a characteristic assessed in terms of accuracy, ruggedness, and automation. Among these criteria, an automatic signal analysis algorithm is generally a prerequisite for deploying a long-term field monitoring program. This paper describes the development and validation of an algorithm for a scour monitoring system based on the principles of guided radar: time-domain reflectometry (TDR). This algorithm is based on the extension of the classic dielectric mixing model to layered systems. The performance of this algorithm is evaluated using experiments designed to simulate different field scour conditions. These include different types of sediments and the variation of river conditions (i.e., salinity of river water, air entrainment, and amount of suspended sediments). The experiment results indicate that the developed analyses algorithm is robust and accurate for scour-depth estimation under these investigated conditions.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference21 articles.

1. New Method for Evaluating Liquefaction Potential

2. Benson, C., and Bosscher, P. 1999. Remote field methods to measure frost depth. In Field instrumentation for soil and rock. STP 1358. Edited by G. Durham and W. Marr. American Society for Testing and Materials (ASTM), West Conshohocken, Pa. pp. 264–284.

3. High dielectric constant microwave probes for sensing soil moisture

4. Damage Detection of Reinforced Concrete Beams with Novel Distributed Crack/Strain Sensors

5. Measuring Dielectric Constant in Highly Conductive Soils Based on Surface Reflection Coefficients

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3