Geochemical characteristics of contaminated surficial sediments in Halifax Harbour: impact of waste discharge

Author:

Buckley Dale E.,Winters Gary V.

Abstract

Analyses of 274 surface sediment samples collected from Halifax inlet between 1986 and 1990 permit assessment of the chemical environmental quality of this major east coast Canadian harbour. Contamination of the marine sediments is due to discharge of untreated sewage and industrial waste directly into the harbour, and leaching of solid waste deposits on land. Concentrations of total Cu, Pb, Zn, Hg, and Cd in the uppermost 2 cm of sediments on the sea floor ranks Halifax Harbour among the most contaminated marine areas in the industrialized world. Statistical factor analysis has been used to identify five types of sediments based on sedimentological and geochemical characteristics. The dominant factor type accounts for 41% of the chemical variance and represents sediments that are highly contaminated with metals and organics derived from sewage effluents and waste deposits. More than 50% of the total Cu, Zn, and Pb in the sediments is potentially reactive as reducible or oxidizable metal.A simple two-layer estuarine circulation model has been used to assess the significance of dissolved metal sources and sinks in the harbour. The contribution to sediment contamination from dissolved metal inputs is relatively minor, with more than 88% of the potentially reactive Cu, Zn, Pb, and Hg being directly associated with particulate deposition. However, the model suggests that high proportions of the dissolved annual inputs of Zn (40% of 5.5 t), Pb (100% of 1.3 t), Hg (100% of 0.02 t), and Mn (89% of 19.6 t) are taken up by the bottom sediments.Future environmental quality management of Halifax Harbour should take into consideration the geochemical stability of sediments. New sewage treatment facilities may reduce the loading of contaminants, but some remobilization of metals from sediments may reduce long-term improvements in contaminant levels in the water column.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3