T4-induced cardiac hypertrophy and the perfused and total microvasculature of the heart

Author:

Weiss Harvey R.,Grover Gary J.

Abstract

The purpose of the present investigation was to determine the effects of thyroxine (T4), which induces myocardial hypertrophy, on the number per square millimetre and volume per cubic millimetre of both the total and perfused portions of the arteriolar and capillary beds of the heart. Studies were conducted in the subendocardial and subepicardial regions of the left ventricle of anesthetized open-chest rabbits. Fluorescein isothiocyanate–dextran (i.v.) or radioactive microspheres (intra-atrial) were injected to label the perfused microvessels or to determine coronary flow in three groups of rabbits: controls, and rabbits given 0.5 mg/kg T4 for 3 days and for 16 days. Fluorescent photography was used to identify the perfused microvessels. An alkaline phosphatase stain was employed to locate the total microvascular bed. There were 2369 ± 638 (SD) capillaries/mm2 and 4 ± 3 arterioles/mm2 in control hearts. These decreased significantly to 1380 ± 199/mm2 and 1 ± 1/mm2, respectively, after 16 days of T4. In controls, 60 ± 5% of the capillaries and 59 ± 21% of the arterioles were perfused. This increased significantly to 90 ± 5 and 86 ± 18%, respectively, by 16 days of T4 treatment. Similar changes, although smaller, were observed after 3 days of T4. Coronary blood flow increased to 1.7 times control after 3 days and 2.9 times after 16 days of T4. No significant subepicardial versus subendocardial differences were observed in any condition or measurement. Thus, the physiological response to the increased work and increase in anatomic minimum diffusion distance is to increase flow and the proportion of the capillary bed perfused to at least maintain physiological diffusion distances.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3