Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa

Author:

Bal Amandeep1,Chanway Christopher P.12

Affiliation:

1. Department of Forest Sciences, Faculty of Forestry, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.

2. Jointly appointed with the Faculty of Land and Food Systems, University of British Columbia, 248-2357 Main Mall, Vancouver, BC V6T 1Z4, Canada.

Abstract

Diazotrophic bacteria previously isolated from internal tissues of naturally regenerating lodgepole pine ( Pinus contorta var. latifolia (Dougl.) Engelm.) seedlings were tested for their ability to colonize and fix nitrogen (N) in pine germinants in two experiments. Surface sterilized pine seed was sown in glass tubes containing an autoclaved sand – montmorillonite clay mixture that contained a N-limited nutrient solution labeled with 15N as 0.35 mmol·L–1 Ca(15NO3)2 (5% 15N label). Pine seed was inoculated with one of three of the following bacterial strains: Paenibacillus polymyxa P2b-2R, P. polymyxa P18b-2R, or Dyadobacter fermentans P19a-2R, and seedlings grew for either 27 or 35 weeks. At the end of each plant growth period, P. polymyxa strain P2b-2R was detected in the pine rhizosphere but not inside plant tissues. Pine foliar N concentrations were not affected by bacterial inoculation but significant foliar 15N dilution was observed in seedlings treated with strain P2b-2R (30% and 66%, P < 0.05, in the first and second experiments, respectively). This strain also reduced seedling biomass in both experiments but effects were significant only in the second experiment (36%, P < 0.05). Notwithstanding the negative effect of bacterial inoculation on seedling growth, pine seedlings inoculated with strain P2b-2R derived 30% and 66%, respectively, of their foliar N from bacterial N fixation in two seedling growth experiments. These results demonstrate the possibility that some endophytic diazotrophs facilitate pine seedling growth in N-poor soils.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3