Author:
Zhong Gan-Yuan,Mcguire Patrick E.,Qualset Calvin O.,Dvořák Jan
Abstract
Barley yellow dwarf is the most damaging virus-caused disease in bread wheat (Triticum aestivum L.). A resistant line, SW335.1.2-13-11-1-5 (2n = 47), derived from a cross of T. aestivum × Lophopyrum ponticum was characterized by meiotic chromosome pairing, by in situ DNA hybridization and by expression of molecular markers to determine its chromosome constitution. All progeny of this line had three pairs of L. ponticum chromosomes from homoeologous chromosome groups 3, 5, and 6 and the 2n = 47 progeny had an additional L. ponticum monosome. The pairs from groups 3 and 6 were in the added state, while the group 5 pair was substituted for wheat chromosome 5D. Several wheat–wheat translocations with respect to the parental wheat genotype occurred in this line, presumably owing to the promotion of homoeologous chromosome pairing by L. ponticum chromosomes. It was hypothesized that homoeologous recombination results in homoeologous duplication–deletions in wheat chromosomes. An aberrant 3:1 disjunction creates the potential at each meiosis for replacement of these wheat chromosomes by homoeologous L. ponticum chromosomes. Wheat chromosomes 3A and 6A appeared to be in intermediate stages of this substitution process.Key words: wheat, wheatgrass, Lophopyrum, barley yellow dwarf virus, disease resistance, homoeologous chromosome recombination, homoeologous pairing, alien chromosome substitution.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献