Author:
Spijkerman Elly,Maberly Stephen C,Coesel Peter FM
Abstract
To test if different inorganic carbon (Ci) uptake mechanisms underlie the ecological distribution pattern of planktonic desmids, we performed pH-drift experiments with 12 strains, belonging to seven species, originating from lakes of different pH. Staurastrum brachiatum Ralfs and Staurodesmus cuspidatus (Ralfs) Teil. var. curvatus (W. West) Teil., species confined to acidic, soft water habitats, showed remarkably different behavior in the pH drift experiments: S. brachiatum appeared to use CO2 only, whereas Staurodesmus cuspidatus appeared to use HCO3 as well. Staurastrum chaetoceras (Schr.) Smith and Staurastrum planctonicum Teil, species well-known for their abundant occurrence in alkaline waters, were the most effective at using HCO3. Other species, to be encountered in both slightly acidic and slightly alkaline waters, took an intermediate position. Experiments using specific inhibitors suggested that Cosmarium abbreviatum Rac. var. planctonicum W. & G.S. West and S. brachiatum use CO2 by an active CO2 uptake mechanism, whereas S. chaetoceras and Staurodesmus cuspidatus showed an active HCO3 uptake pattern. Most likely, these active uptake mechanisms make use of H+-ATPase, as none of the desmids expressed significant carbonic anhydrase activity. A series of strains of Staurastrum planctonicum isolated from different habitats, all clustered in between the species using HCO3, but no further differentiation was observed. Therefore, desmids cannot be simply characterized as exclusive CO2 users, and the ecological distribution pattern of a desmid species does not unequivocally link to a certain Ci uptake mechanism. Nevertheless, there does appear to be a general ecological link between a species' Ci uptake mechanism and its ecological distribution.Key words: pH drift, desmids, isolate variation, inorganic carbon acquisition.
Publisher
Canadian Science Publishing
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献