Cellular interaction of the smut fungus Ustacystis waldsteiniae

Author:

Bauer Robert,Oberwinkler Franz,Mendgen Kurt

Abstract

The cellular interaction between the smut fungus Ustacystis waldsteiniae and its host Waldsteinia geoides was analyzed by serial-section electron microscopy using chemically fixed and high-pressure frozen – freeze-substituted samples. After penetration, each haustorium extends a short distance into the host cell where it often forms up to three short lobes. The haustorium is wholly ensheathed by a prominent matrix. The matrix is a complex structure, differing significantly from that known of other fungal plant parasites: it is filled with amorphous, electron-opaque material in which membrane-bounded, coralloid vesicles are embedded. During the contact phase of the hypha with the host cell wall, vesicles with electron-opaque contents accumulate in the contact area of the hypha where they appear to fuse with the fungal plasma membrane and extrude their contents. Subsequently, the host cell wall increases in electron opacity and matrix material becomes deposited between host plasma membrane and host cell wall exactly at the ends of the altered areas in the host cell wall. The coralloid vesicles within the matrix, however, are of host origin: exocytosis of Golgi products into the matrix results in the formation of coralloid vesicular buds in the host plasma membrane. Subsequently, the buds seem to detach from the host plasma membrane to flow as coralloid vesicles into the matrix. Matrix development continues during penetration and after penetration at the haustorial tips. After host wall penetration, the fungal cell wall comes in contact with the matrix. The fungal component of the matrix may play a key role in the inducement of these transfer cell-like compartments in host cells responding to infection. Key words: freeze substitution, haustoria, high-pressure freezing, host–parasite interaction, smut fungi, Ustacystis waldsteiniae.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3