Affiliation:
1. Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada.
2. Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
Abstract
Iron-limited cyanobacterial cells are generally considered to acquire extracellular iron through a siderophore-dependent system, although evidence has started to accumulate that other, as yet poorly characterized, iron acquisition systems may also play a role. Iron-limited cells of the cyanobacterium Anabaena flos-aquae (Lyng.) Brèb. are well known to produce the relatively low Fe(III) affinity dihydroxamate siderophore schizokinen. In this set of experiments we show that iron-limited A. flos-aquae cells (i) acquired iron at substantial rates in the absence of the schizokinen and (ii) acquired iron from a bacterial siderophore (the trihydroxamate molecule desferrioxamine B (DFB)), and also a synthetic chelator (N, N-bis(2-(bis(carboxymethyl)amino)ethyl)glycine (DTPA)), with substantially higher affinities for Fe(III) than schizokinen, indicating that a schizokinen-independent iron acquisition pathway was operating. We suggest that there exists a siderophore-independent iron acquisition system that is able to acquire Fe(III) from high stability Fe(III)-chelates, which are not accessible to iron-limited cells via the schizokinen-based system. As well, we present two possible models for iron acquisition by iron-limited A. flos-aquae cells. Both of these models suggest that there are two major routes for Fe(III) entry into the periplasm of iron-limited cells: (1) the well-characterized siderophore (schizokinen) dependent process and (2) a siderophore-independent process that is able to access Fe(III) sources not biologically available to the schizokinen system.
Publisher
Canadian Science Publishing
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献