The reversible enolization and hydration of pyruvate: possible roles of keto, enol, and hydrated pyruvate in lactate dehydrogenase catalysis

Author:

Esposito A,Lukas A,Meany J E,Pocker Y

Abstract

The reversible enolization and hydration of pyruvic acid and pyruvate anion were monitored using spectrophotometric methods at several temperatures. Widely varying values for the equilibrium constant for the enolization of pyruvic acid and pyruvate ion appear in the literature. To accurately determine the position of equilibrium for the enolization reaction, we have developed a method that gives consistent results in which purified samples of sodium pyruvate are first "titrated" with triiodide ion to remove any triiodide-scavenging impurities such as those resulting from aldol condensation reactions. After reequilibration to allow the regeneration of enol pyruvate, the addition of small quantities of triiodide result in an initial burst in the decrease of absorbance at 353 nm, followed by the much slower zero-order decrease due to the formation of new enol pyvuvate molecules. The absorbance change during the burst phase of the reaction is proportional to the enol concentration plus that of any triiodide-scavenging impurity which may be present in the original pyruvate solution. Thus, as the quantity of triiodide used in the pretreatment stage of the experiments is increased, these burst absorbance changes, ΔA, decrease until a constant value of ΔA is reached. Accordingly, this final ΔA value is proportional to enol pyruvate (or enol pyruvic acid) in the absence of triiodide-scavenging impurity, allowing the accurate and reproducible determinations of Kenol. The equilibrium constants for both pyruvate and pyruvic acid are relatively temperature insensitive and, typically, Kenol(pyruvate anion) = 2.6 × 10-5and Kenol(pyruvic acid) = 7.8 × 10-5at 25.0°C. The zero-order phase of the reaction of triiodide ion may be used to calculate rate constants for enolization. The hydration and dehydration of pyruvic acid were followed directly by following absorbance changes in the peak at 340 nm due to the keto group. The thermodynamic and kinetic results reported in this paper are used to help determine whether the observed "substrate" inhibition of the lactate dehydrogenase catalyzed reduction of pyruvate is actually caused by keto, hydrated, or enol pyruvate.Key words: pyruvate, enolization, hydration, lactate dehydrogenase.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3