Potassium fluxes, energy metabolism, and oxygenation in intact diabetic rat hearts under normal and stress conditions

Author:

Jilkina Olga123,Kuzio Bozena123,Kupriyanov Valery V.123

Affiliation:

1. Institute for Biodiagnostics, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB R3B 1Y6, Canada.

2. Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada.

3. Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.

Abstract

We evaluated the function of Na+/K+ATPase and sarcolemmal KATPchannels in diabetic rat hearts. Six weeks after streptozotocin (STZ) injection, unidirectional K+fluxes were assayed by using87rubidium (87Rb+) MRS. The hearts were loaded with Rb+by perfusion with Krebs–Henseleit buffer, in which 50% of K+was substituted with Rb+. The rate constant of Rb+uptake via Na+/K+ATPase was reduced. KATP-mediated Rb+efflux was activated metabolically with 2,4-dinitrophenol (DNP, 50 µmol·L–1) or pharmacologically with a KATPchannel opener, P-1075 (5 µmol·L–1). Cardiac energetics were monitored by using31P MRS and optical spectroscopy. DNP produced a smaller ATP decrease, yet similar Rb+efflux activation in STZ hearts. In K+-arrested hearts, P-1075 had no effect on high-energy phosphates and stimulated Rb+efflux by interaction with SUR2A subunit of KATPchannel; this stimulation was greater in STZ hearts. In normokalemic hearts, P-1075 caused cardiac arrest and ATP decline, and the stimulation of Rb+efflux was lower in normokalemic STZ hearts arrested by P-1075. Thus, the Rb+efflux stimulation in STZ hearts was altered depending on the mode of KATPchannel activation: pharmacologic stimulation (P-1075) was enhanced, whereas metabolic stimulation (DNP) was reduced. Both the basal concentration of phosphocreatine ([PCr]) and [PCr]/[ATP] were reduced; nevertheless, the STZ hearts were more or equally resistant to metabolic stress.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3