Spatiotemporal dynamics of reentrant ventricular tachycardias in canine myocardial infarction: pharmacological modulation

Author:

Hélie François,Vinet Alain,Cardinal René

Abstract

During the transition from a slow to rapid depolarization rhythm, rate-dependent sodium channel blockade develops progressively and increases from beat to beat under procainamide but more abruptly under lidocaine. We investigated the consequences of such differences on the dynamic course and stability of reentrant tachycardias at their onset. Procainamide and lidocaine were infused to equipotent plasma concentrations in canines with three-day-old myocardial infarction. We measured the activation times (ms) and maximum slopes of negative deflections in activation complexes (absolute value: |–dV/dtmax| in mV/ms) in 191 unipolar electrograms recorded from ischemically damaged subepicardial muscle during programmed stimulation inducing reentrant tachycardias. Procainamide caused a greater reduction in |–dV/dtmax| than did lidocaine in the responses to basic stimulation, and it favored the occurrence of cycle length prolongation at tachycardia onset as the |–dV/dtmax| decreased progressively in successive beats. This resulted in conduction block and tachycardia termination in three of eight preparations. In contrast, lidocaine caused a greater depression in |–dV/dtmax| in response to closely coupled extrastimuli, but |–dV/dtmax| remained constant or even improved thereafter, and none of the tachycardias terminated spontaneously under lidocaine (n = 9). However, the reentrant circuits remained spatially unstable, and lidocaine favored the occurrence of cycle length dynamics displaying constant or decreasing trends. This study supports the notion that cycle length dynamics at tachycardia onset are determined by the properties of the reentrant substrate and their pharmacological modulation. Key words: lidocaine, procainamide, reentry, ventricular tachycardia, cycle length dynamics.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3