The Adsorption, Desorption, and Exchange Reactions of Oxygen, Hydrogen, and Water on Platinum Surfaces. II. Hydrogen Adsorption, Exchange, and Equilibration

Author:

Peng Y. K.,Dawson P. T.

Abstract

The adsorption, desorption, exchange, and equilibration reactions of hydrogen and deuterium on a platinum filament have been investigated by thermal desorption mass spectrometry. A surface saturated with hydrogen at 120 °K has a coverage 4.2 × 1014 molecules cm−2 and gives desorption spectra with four distinct peaks: β1,(165 °K), β2(220 °K), β3(280 °K), and β4(350 °K). Apparent activation energies and pre-exponential factors were determined for the β2-, β3-, and β4-peaks. For both co-adsorption and sequential adsorption of H2 and D2 the mass 2, 3, and 4 desorption spectra have identical shapes and the gas desorbs at equilibrium throughout. It is concluded that hydrogen adsorbs dissociatively. Exchange and equilibration were studied at 120, 210, and 285 °K by determining the surface composition and isotope distribution after varying fractions of preadsorbed H had been replaced. Following exchange at 120 °K the desorption spectra show a higher D content and a lack of equilibrium in the desorbing gas at low temperature. In most other experiments the mass 2,3, and 4 desorption spectra had identical shapes and the gas desorbed at equilibrium. The results are interpreted by a model which requires that the polycrystalline platinum surface is intrinsically heterogeneous. It appears that different mechanisms are unnecessary to interpret the differences in kinetics observed for exchange and equilibration at low temperatures.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3