Author:
Oh Sang-Hoon,Kim Young-Ju,Moon Tae-Sup
Abstract
This study investigated the effectiveness of retrofit methods in improving the deformation capacity of existing moment connections in composite beams. Nonlinear finite element analysis was also performed to identify the cause of the connection failure prior to testing. Tests included one conventional specimen and four retrofit specimens. Three retrofit methods were introduced: a reduced beam section (RBS) only, an RBS with bottom flange reinforcement (RBR), and an RBS-shaped bottom flange reinforcement (RSR). A composite beam performs differently than a bare steel shape because the concrete compression flange greatly increases the tensile demands on an unreinforced bottom flange. Therefore, these retrofit methods were applied only to the bottom flanges of the beam. Quasi-static loading tests were performed. The main conclusions were as follows: (i) the deformation capacity of the existing moment connections in composite beams is not sufficiently improved by RBS alone; and (ii) both the RBR and RSR details move the plastic hinge away from the face of the column and reduce stress levels in the vicinity of the beam bottom flanges, sufficiently improving the deformation capacity.Key words: composite construction, seismic performance, reduced beam section (RBS), flange reinforcement, ductility, deformation capacity.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献