Author:
Whyte Lyle G.,Greer Charles W.,Inniss William E.
Abstract
Bioremediation of polluted temperate and cold temperature environments may require the activity of psychrotrophic bacteria, because their low temperature growth range parallels the ambient temperatures encountered in these environments. In the present study, 135 psychrotrophic microorganisms isolated from a variety of ecosystems in Canada were examined for their ability to mineralize14C-labelled toluene, naphthalene, dodecane, hexadecane, 2-chlorobiphenyl, and pentachlorophenol. A number of the psychrotrophic strains mineralized toluene, naphthalene, dodecane, and hexadecane. None of the psychrotrophs were capable of mineralizing 2-chlorobiphenyl or pentachlorophenol. Those strains demonstrating mineralization activity were subsequently screened by the polymerase chain reaction (PCR) and Southern hybridization of PCR products for the presence of catabolic genes (alkB, ndoB, todC1, and xylE) involved in known bacterial biodegradative pathways for these compounds. Some of the psychrotrophs able to mineralize toluene and naphthalene possessed catabolic genes that hybridized to xylE or todC1, and ndoB, respectively. The alkB PCR fragments obtained from the strains that mineralized dodecane and hexadecane did not hybridize to an alkB gene probe derived from Pseudomonas oleovorans. Psychrotrophic strain Q15, identified as a Rhodococcus sp., also mineralized the C28n-paraffin octacosane. A gene probe constructed from the "alkB" PCR fragment from strain Q15 did hybridize with the alkB PCR fragments from most of the psychrotrophic alkane biodegraders, indicating that the alkB primers may be amplifying another gene(s), perhaps with low homology to P. oleovorans alkB, which may be involved in the biodegradation of both short chain (dodecane) and longer chain alkanes (hexadecane, octacosane). All of the psychrotrophic biodegradative isolates examined were capable of mineralization activity at both 23 and 5 °C, indicating their potential for low temperature bioremediation of petroleum hydrocarbon contaminated sites.Key words: psychrotrophic microorganisms, biodegradation, catabolic gene probes, organic pollutants.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献