Affiliation:
1. Department of Integrative Biology, Brigham Young University, Provo, UT 84602, USA.
Abstract
Termites of the genus Reticulitermes are some of the most significant pests of structural timber and tree farming in the northern hemisphere, causing losses in the billions of dollars annually because of direct damage and termite control costs. This group has been frequently targeted for population genetic, phylogenetic, and species limit studies, most of which use mitochondrial (mt) genes; however, only a small fraction of the genome has been sequenced. The entire mt genome was sequenced for the eastern North American members of Reticulitermes: R. flavipes, R. santonensis, R. virginicus, and R. hageni. The mt genome has the same gene content and organization as that found in most insect species; however, the nucleotide composition and skew are highly biased (AT% low, strong A- and C-skew). Both the protein-coding and transfer RNA genes show high absolute levels of nucleotide substitution, suggesting that the high rates of mutation within Reticulitermes inferred from analyses of single mt genes are a general characteristic of the entire mt genome. The AT-rich or control region has a remarkable structure not previously observed in insect mt genomes. The majority of the control region is made up of 2 sets of repeat units, typically with 2 full and 1 partial copies of both the A (or small; 186 bp) and B (or large; 552 bp) repeats. The partial repeat units overlap by 36 bp. The size, location, and degree of overlap for the partial repeat units correspond to highly conserved stem/loop structures within the repeat units, suggesting that these structures are involved in the replication-mediated processes that govern repeat-unit evolution within mt genomes. Finally, molecular variation within the mt gene regions was compared with previous regions used in molecular diagnostics or phylogenetics of Reticulitermes. High numbers of single nucleotide polymorphisms were found in each of the mt genes, and some of the highest variability was found in gene regions that have not previously been investigated in this group. The whole mt genome sequence can thus be used to predict useful regions for future investigation.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献