Computational studies of ice defects

Author:

Plummer P LM

Abstract

Continuing our investigations of the energetics associated with defect formation and migration, both ab initio energy-structure calculations and molecular dynamics simulations are carried out on small clusters of water molecules containing one or more defects in hydrogen bonding. Previous studies in this series have identified structures containing defects that are stable at 0 K or that are transition states between such structures. However, results from this laboratory and elsewhere have shown that the energy required for the production or migration of a defect is more complex than merely the energy difference between the static structures. Cooperative motion of neighbors to the defect site can either increase or decrease the energy involved to produce or annihilate the defect. Thus, experimental measurements associated with the energy of defects in ice can differ substantially from those calculated using static models. By increasing the complexity of the model, the studies described in this report attempt to more realistically simulate a defect-containing ice system. The types of defects studied include ion and ion-pair defects. The initial structures are energetically stable — minima on the electronic energy surface — and contain one or more kinds of defects. Since the means and amount of energy injection can alter the migration path, the energy is introduced into the system in a variety of ways. The structural evolution of the ice system is then monitored as a function of time. PACS Nos.: 82.20Wt, 82.20Kh, 82.30Rs

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3