Abstract
Continuing our investigations of the energetics associated with defect formation and migration, both ab initio energy-structure calculations and molecular dynamics simulations are carried out on small clusters of water molecules containing one or more defects in hydrogen bonding. Previous studies in this series have identified structures containing defects that are stable at 0 K or that are transition states between such structures. However, results from this laboratory and elsewhere have shown that the energy required for the production or migration of a defect is more complex than merely the energy difference between the static structures. Cooperative motion of neighbors to the defect site can either increase or decrease the energy involved to produce or annihilate the defect. Thus, experimental measurements associated with the energy of defects in ice can differ substantially from those calculated using static models. By increasing the complexity of the model, the studies described in this report attempt to more realistically simulate a defect-containing ice system. The types of defects studied include ion and ion-pair defects. The initial structures are energetically stable minima on the electronic energy surface and contain one or more kinds of defects. Since the means and amount of energy injection can alter the migration path, the energy is introduced into the system in a variety of ways. The structural evolution of the ice system is then monitored as a function of time. PACS Nos.: 82.20Wt, 82.20Kh, 82.30Rs
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献