Whole-plant 14C-photosynthate allocation in Pinustaeda: seasonal patterns at ambient and elevated ozone levels

Author:

Adams M. B.,Edwards N. T.,Taylor Jr. G. E.,Skaggs B. L.

Abstract

The seasonal patterns of carbon gain and allocation were examined in Pinustaeda L. seedlings grown under field conditions. To investigate how ozone stress may influence whole-plant carbon budgets over the growing season, the seedlings were grown in either ambient air or air enriched with ozone at twice-ambient levels. On five sampling dates during the 1987 growing season, seedlings were labeled with 14CO2, and whole-plant carbon budgets were constructed. Rate of assimilation of CO2 varied by a factor of 2 during the growing season, with a late spring maximum during the first growth flush. Respiratory losses were highest in the spring and then declined sharply during the summer when photosynthate allocation to the foliage increased rapidly. A second major shift in the carbon budget occurred in the autumn when allocation to the fine roots increased at the expense of the foliage. The proportion of photosynthate allocated to coarse roots and stems varied only slightly over the growing season. Allocation to any plant component was highest when growth of that component was at a maximum. No statistically significant effects of elevated ozone on either carbon gain or photosynthate allocation were detected at any specific time during the growing season. However, seedlings grown at twice-ambient ozone levels consistently exhibited the following trends: (i) lower rates of CO2 assimilation, (ii) greater allocation of photosynthate to respiration, and (iii) corresponding reduction in photosynthate allocation to fine roots. An individual-fascicle 14C-labeling technique was found to reflect the seasonal patterns of carbon import and export by foliage and thus may serve as an acceptable surrogate for whole-tree tagging. The pronounced seasonality of the carbon budgets in P. taeda in conjunction with a pattern of ozone effects on carbon assimilation and photosynthate allocation suggests that whole-plant carbon budgets are sensitive and biologically meaningful indicators of seedlings' responses to anthropogenic changes in atmospheric chemistry.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3