X-ray diffraction evidence for decreased lipid fluidity in senescent membranes from cotyledons

Author:

McKersie B. D.,Thompson J. E.,Brandon J. K.

Abstract

Smooth microsomal membranes were isolated from bean cotyledons at various intervals after planting. Wide-angle x-ray diffraction patterns were recorded at room temperature from oriented specimens of the membranes. Patterns for membranes from 2-day-old cotyledons featured a broad lipid reflection centered about a Bragg spacing of 4.6 Å. This diffraction band derives from the apolar hydrocarbon chains of the membrane phospholipid, and its diffuse nature indicates that these hydrocarbons are in a disordered liquid–crystalline state. By day 4 in the germination sequence a faint sharp band superimposed on the broad lipid reflection was discernable at a Bragg spacing of 4.15 Å. This sharp reflection represents lipid in an ordered, crystalline state and derives from a close hexagonal packing of the hydrocarbon chains. During the later stages of germination the 4.15-Å reflection intensified to the point of becoming very pronounced in patterns for membranes from 9-day-old cotyledons. These patterns also displayed a sharp but weaker reflection at 3.75 Å, which derives from an orthorhombic packing of the hydrocarbon chains in crystalline lipid. By 9 days of age the cotyledons were extensively senescent and beginning to abscise.The data indicate that senescence of membranes involves a phase change whereby the proportion of crystalline to liquid– crystalline lipid progressively increases. This changed physical state of the lipid represents a substantial decrease in membrane fluidity and may well contribute to loss of membrane function in senescing membranes.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3