Author:
Wilson D. R.,Cusimano M.,Honrath U.
Abstract
The role of the renal nerves in the altered sodium reabsorption which occurs during increased ureteral pressure was studied using clearance techniques in anaesthetized rats undergoing diuresis induced by isotonic saline infusion. In rats with a sham denervated kidney, an ipsilateral increase in ureteral pressure to 20 cm H2O resulted in a marked and significant decrease in sodium and water excretion, increased fractional sodium reabsorption, and increased urine osmolality with no significant change in glomerular filtration rate. A similar significant ipsilateral increase in tubular reabsorption of sodium occurred in rats with chronically denervated kidneys during increased ureteral pressure. The changes in tubular reabsorption were rapidly reversible after return of ureteral pressure to normal. These experiments indicate that enhanced tubular reabsorption of sodium during an ipsilateral increase in ureteral pressure is not mediated by increased renal nerve activity. During the antinatriuresis of increased ureteral pressure there was a decrease in the fractional reabsorption of sodium from the opposite normal kidney. The role of the renal nerves in this compensatory change in function in the opposite kidney was studied in two further groups of animals. The renal response to a contralateral increase in ureteral pressure was similar in denervated and sham-denervated kidneys. The results indicate that altered renal nerve activity, through ipsilateral or contralateral renorenal reflexes, is not responsible for the changes in tubular reabsorption of sodium which occur during increased ureteral pressure induced by partial ureteral obstruction.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献