Closed-form solution of Cattaneo equation including volumetric source in relation to laser short-pulse heating

Author:

Al-Qahtani H.1,Yilbas B.S.1

Affiliation:

1. Mechanical Engineering Dept., King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

Abstract

The wave nature of the heating model is considered, incorporating the Cattaneo equation with the presence of a volumetric heat source. The volumetric heat generation resembles the step input laser short-pulse intensity. The governing of the heat equation is solved analytically using the Laplace transformation method. The stress field generated due to thermal contraction and expansion of the substrate material is formulated and the closed-form solution is presented. It is found that the wave nature of the heating is dominant during the period of the irradiated short-pulse; however, in the late cooling period, the wave nature of heating is replaced by diffusional heat conduction, governed by Fourier’s law. The stress field during the heating cycle is compressive and becomes tensile in the cooling cycle.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3