Ground motion sensitivity of a Vancouver-style high rise

Author:

White Timothy,Ventura Carlos E

Abstract

The purpose of the study discussed in this paper is to evaluate the seismic response of a modern building, designed according to the current building code and to extreme earthquake earthquakes from two different source mechanisms. To this end, a three-dimensional nonlinear dynamic response of a reinforced concrete high-rise building, typical of the type built in Vancouver, British Columbia, is investigated. According to current design practice, the building has been designed to resist lateral loads with a coupled shearwall system. A comparison of the responses of the building to crustal and subduction type earthquakes of similar magnitudes is presented and discussed. The ground motion records selected for this study were derived from recorded crustal and subduction events, which are both considered to be extreme, and beyond the code-based design requirements of the building. A part of this study includes an evaluation of how the dynamic properties of the building change as the building is being damaged by severe ground shaking. The results of the study show that the crustal earthquake imposes large upper levels displacements, and much plastic hinging near the base because the response of the building is governed mainly by the first mode of the "undamaged" system. The subduction earthquake results in displacements smaller than those from the crustal event and causes plastic hinging at mid-height and near the base as well as large torsional rotations, because the behaviour of the building is greatly influenced by the second mode of the "damaged" system.Key words: nonlinear dynamic analysis, seismic, high rise, reinforced concrete, coupled shearwall.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3