Author:
Turner R. E.,Dahler J. S.,Snider R. F.
Abstract
The projection operator method of Zwanzig and Feshbach is used to construct the time dependent density operator associated with a binary scattering event. The formula developed to describe this time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators. Both Sehrödinger and interaction picture results are presented. The former is used to demonstrate the equivalence of the time dependent solution of the von Neumann equation and the more familiar, frequency dependent Laplaee transform solution. For two particular classes of projection superoperators projected density operators arc shown to be equivalent to projected wave functions. Except for these two special eases, no projected wave function analogs of projected density operators exist. Along with the decoupled-motions approximation, projected interaction picture density operators arc applied to inelastic scattering events. Simple illustrations arc provided of how this formalism is related to previously established results for two-state processes, namely, the theory of resonant transfer events, the first order Magnus approximation, and the Landau–Zener theory.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献