Hoek-Brown parameters for predicting the depth of brittle failure around tunnels

Author:

Martin C D,Kaiser P K,McCreath D R

Abstract

A review of underground openings, excavated in varying rock masstypes and conditions, indicates that the initiation of brittlefailure occurs when the damage index, Di, expressed as theratio of the maximum tangential boundary stress to the laboratoryunconfined compressive strength exceeds approx0.4. When thedamage index exceeds this value, the depth of brittle failure around a tunnel can be estimated by using a strengthenvelope based solely on cohesion, which in terms of theHoek-Brown parameters implies that m = 0. It is proposed that inthe brittle failure process peak cohesion and friction are notmobilized together, and that around underground openings thebrittle failure process is dominated by a loss of the intrinsiccohesion of the rock mass such that the frictional strengthcomponent can be ignored for estimating the depth of brittlefailure, an essential component in designing support for theopening. Case histories were analyzed using the Hoek-Brownfailure criterion, with traditional frictional parameters, and withthe proposed brittle rock mass parameters: m = 0 and s = 0.11. Theanalyses show that use of a rock mass failure criteria withfrictional parameters (m > 0) significantly underpredicts thedepth of brittle failure while use of the brittle parametersprovides good agreement with field observations. Analyses usingthe brittle parameters also show that in intermediate stressenvironments, where stress-induced brittle failure is localized, atunnel with a flat roof is more stable than a tunnel with anarched roof. This is consistent with field observations. Hence,the Hoek-Brown brittle parameters can be used to estimate thedepth of brittle failure around tunnels, the support demand-loadscaused by stress-induced failure, and the optimum geometry of theopening.Key words: spalling, depth of failure, rock mass strength, brittle failure criterion, cohesion loss, Hoek-Brown brittle parameters

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 317 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3