Abstract
Studies in my lab have focused on DNA transposition in the bacterial virus, Mu. In vitro studies have shown that Mu DNA transposition is a three-step process involving DNA breakage, strand transfer and DNA replication. In the first step, a nick is introduced at each end of the transposon. The liberated 3'-OH groups subsequently attack a target DNA molecule resulting in strand transfer. The transposon DNA, now covalently linked to the target, is finally replicated to generate the transposition end-product, referred to as a cointegrate. The DNA cleavage and strand transfer reactions are mediated by a "jumping gene machine" or transpososomes, which we discovered in 1987. They are assembled by bringing together three different DNA regions via a process involving multiple protein-DNA and protein-protein interactions. The action of four different proteins is required in addition to protein-induced DNA bending or wrapping to overcome the intrinsic stiffness of DNA, which would ordinarily prohibit the assembly of such a structure. Transpososome assembly is a gradual process involving multiple steps with an inherent flexibility whereby alternate pathways can be used in the assembly process, biasing the reaction towards completion under different conditions.Key words: DNA transposition, transposons, higher-order nucleoprotein complexes, DNA breakage and reunion, site-specific recombination.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献