Author:
Sukhotu Thitaporn,Kamijima Osamu,Hosaka Kazuyoshi
Abstract
Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are native farmer-selected important cultivars that form a primary gene pool of the common potato (Solanum tuberosum L. subsp. tuberosum). The genetic diversity of 185 Andigena accessions and 6 Chilean native potatoes (S. tuberosum subsp. tuberosum) was studied using chloroplast DNA (ctDNA) microsatellites and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Andigena potatoes had 14 ctDNA haplotypes and showed higher variability in the central Andes, particularly in Bolivia, whereas those in the northern regions of the distribution area were remarkably uniform with A1 ctDNA and Chilean subsp. tuberosum with T ctDNA. Most of 123 clearly scored RFLP bands using 30 single-copy probes were randomly distributed throughout the distribution area and proved the same gene pool shared among these widely collected accessions. Nevertheless, the geographic trend of the nDNA differentiation from north to south along the Andes and the correlated differentiation between nDNA and ctDNA (r = 0.120) could also be revealed by canonical variates analysis. These results suggest that the genetic diversity in Andigena was brought about primarily from cultivated diploid species but considerably modified through sexual polyploidization and intervarietal and (or) introgressive hybridization and long-distance dispersal of seed tubers by humans.Key words: Andigena, chloroplast DNA, nuclear DNA, RFLP, geographic trend, diversity.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献