Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan

Author:

Nagaike Takuo,Kamitani Tomohiko,Nakashizuka Tohru

Abstract

To clarify how different forest management systems affect the diversity of understory vascular plant species at the plot level and the forest-type level, we examined a forested landscape originally occupied by primary Japanese beech, Fagus crenata Blume, in central Japan. The landscape is currently composed of four types of forest: primary F. crenata forest, shelterwood logged F. crenata forest, abandoned coppice forest, and coniferous plantation. Species richness per plot (α diversity) and in each forest type (γ diversity) and species turnover among plots in each forest type (β diversity) reached their highest values in plantation forests. While the difference in species composition between primary and shelterwood logged forests was not significant, the other pairs of forest types showed significant differences. Ordination analysis revealed that variation in species composition within the plantations seemed to be related to the dominance of naturally regenerated tree species, which reflected the intensity of tending. Although the species composition of less intensively tended plantations was similar to that of abandoned coppice forests that had been repeatedly cut in the past, their species composition differed from that of the primary forests. This suggests that most of the plantation and coppice forests, which were clear-cut at least once, do not revert to primary forest conditions after management is abandoned.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3