HumanGLUD1andGLUD2glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum

Author:

Mastorodemos Vasileios1,Kotzamani Dimitra1,Zaganas Ioannis1,Arianoglou Giovanna1,Latsoudis Helen1,Plaitakis Andreas1

Affiliation:

1. Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece.

Abstract

Mammalian glutamate dehydrogenase (GDH), an enzyme central to glutamate metabolism, is thought to localize to the mitochondrial matrix, although there are also suggestions for the extramitochondrial presence of this protein. Whereas GDH in mammals is encoded by the GLUD1 gene, humans and the great apes have, in addition, a GLUD2 gene showing a distinct expression pattern. The encoded hGDH1 and hGDH2 isoenzymes are highly homologous, but their leader sequences are more divergent. To explore their subcellular targeting, we constructed expression vectors in which hGDH1 or hGDH2 was fused with the enhanced green fluorescent protein (EGFP) and used these to transfect COS 7, HeLa, CHO, HEK293, or neuroblastoma SHSY-5Y cells. Confocal microscopy revealed GDH-EGFP fluorescence in the cytoplasm within coarse structures. Cotransfection experiments using organelle-specific markers revealed that hGDH1 or hGDH2 colocalized with the mitochondrial marker DsRed2-Mito and to a lesser extent with the endoplasmic reticulum marker DsRed2-ER. Western blots detected two GDH-EGFP specific bands: a ~90 kDa band and a ~95 kDa band associated with the mitochondria and the endoplasmic reticulum containing cytosol, respectively. Deletion of the signal sequence, while altering drastically the fluoresce distribution within the cell, prevented GDH from entering the mitochondria, with the ~90 kDa band being retained in the cytosol. In addition, the deletion eliminated the ~95 kDa band from cell lysates, thus confirming that it represents the full-length GDH. Hence, while most of the hGDHs translocate into the mitochondria (a process associated with cleavage of the signal sequence), part of the protein localizes to the endoplasmic reticulum, probably serving additional functions.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3