Author:
Olding Daniel D,Hellebust Johan A,Douglas Marianne SV
Abstract
Distinct differences in observed summer phytoplankton communities in relation to maximum depth suggest that constraints posed by water-body morphometry may modify the trophic control of phytoplankton-community composition and structure in urban water bodies. In deep urban sites (Zmax [Formula: see text] 5 m), phytoplankton communities tended to be predictably related to trophic status (i.e., increases in trophy were associated with increased cyanobacterial dominance, a decreased proportion of Chrysophyceae-Synurophyceae and grazable-size algae, and a decrease in community richness), although exceptions existed, owing to factors such as human intervention, age of the water body, and flushing rates. In contrast, in shallow urban water bodies (Zmax < 5 m), trophic status was a poor predictor of phytoplankton communities. Across meso- to hyper-eutrophic conditions, shallow urban sites were rarely dominated by cyanobacteria and, when they were, the species composition differed from nutrient-rich deep urban sites. The key requirement for cyanobacterial dominance in shallow urban sites appears to be sufficiently long water residence times, viz., greater than 8-14 days. Further study should describe how the relationship between water body residence time and species-generation time may limit the development of specific nuisance algal species, aiding in the management and rehabilitation of urban water bodies.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献