Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs, and ponds

Author:

Olding Daniel D,Hellebust Johan A,Douglas Marianne SV

Abstract

Distinct differences in observed summer phytoplankton communities in relation to maximum depth suggest that constraints posed by water-body morphometry may modify the trophic control of phytoplankton-community composition and structure in urban water bodies. In deep urban sites (Zmax [Formula: see text] 5 m), phytoplankton communities tended to be predictably related to trophic status (i.e., increases in trophy were associated with increased cyanobacterial dominance, a decreased proportion of Chrysophyceae-Synurophyceae and grazable-size algae, and a decrease in community richness), although exceptions existed, owing to factors such as human intervention, age of the water body, and flushing rates. In contrast, in shallow urban water bodies (Zmax < 5 m), trophic status was a poor predictor of phytoplankton communities. Across meso- to hyper-eutrophic conditions, shallow urban sites were rarely dominated by cyanobacteria and, when they were, the species composition differed from nutrient-rich deep urban sites. The key requirement for cyanobacterial dominance in shallow urban sites appears to be sufficiently long water residence times, viz., greater than 8-14 days. Further study should describe how the relationship between water body residence time and species-generation time may limit the development of specific nuisance algal species, aiding in the management and rehabilitation of urban water bodies.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3