Transient middle cerebral artery occlusion and reperfusion alters inducible NOS expression within the ventrolateral medulla and modulates cardiovascular function during static exercise

Author:

Ally Ahmmed1,Maher Timothy J.2

Affiliation:

1. Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA.

2. Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA.

Abstract

A major cause of stroke is cerebral ischemia in regions supplied by the middle cerebral artery (MCA). In this study, we hypothesized that compromised cardiovascular function during static exercise may involve altered expression of inducible NOS (iNOS) protein within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM). We compared cardiovascular responses and iNOS protein expression within the left and right sides of both RVLM and CVLM in sham-operated rats and in rats with a 90 min left-sided MCA occlusion (MCAO) followed by 24 h of reperfusion. Increases in blood pressure during a static muscle contraction were attenuated in MCAO rats compared with sham-operated rats. Also, iNOS expression within the left RVLM was augmented compared with the right RVLM in MCAO rats and compared with both RVLM quadrants in sham-operated rats. In contrast, compared with sham-operated rats and the right CVLM of MCAO rats, iNOS expression was attenuated in the left CVLM in left-sided MCAO rats. These data suggest that the attenuation of pressor responses during static exercise in MCAO rats involves overexpression of iNOS within the ipsilateral RVLM and attenuation in iNOS within the ipsilateral CVLM. Differential expression of iNOS within the medulla plays a role in mediating cardiovascular responses during static exercise following stroke.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3