THE ROLE OF AMORPHOUS INTERMEDIATE PRODUCTS IN THE DEHYDRATION OF CERTAIN HYDRATED SALTS

Author:

Frost G. B.,Moon K. A.,Tompkins E. H.

Abstract

Following the dehydration of certain hydrated salts in high vacuum, an evolution of energy occurs. X-ray studies have shown that this energy liberation is due to an amorphous to crystalline transition in the products of dehydration. Measurements have been made of the integral heats of solution of the dehydration products of copper sulphate pentahydrate and zinc sulphate hexahydrate formed at a series of low dehydration pressures. From these measurements, the fractional amounts of relatively high energy amorphous products formed at a series of low dehydration pressures have been calculated. It has been found that as the water vapor pressure near the reaction interface is increased, the fractional amount of high energy product decreases to a minimum, then increases, passes through a maximum, followed by a slow decrease. These results are interpreted in terms of a possible dehydration mechanism, and an estimation made of the effect of water vapor pressure on the over-all reaction rate. In the course of this study, the integral heats of solution of the crystalline hydrates involved have been determined. The heats of transition of the amorphous to crystalline forms of copper and zinc sulphate monohydrates are reported.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference3 articles.

1. KOGINSK.,S. %. Trans. 17;iracla).Soc. 3-1: $159. 1938.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Redefinition of Lemanskiite: New Mineralogical Data, Crystal Structure, and Revised Formula NaCaCu5(AsO4)4Cl · 3H2O;Geology of Ore Deposits;2018-12

2. Role of vapour oversaturation in the thermal decomposition of solids;Journal of Thermal Analysis and Calorimetry;2009-03-12

3. Dehydration and rehydration behaviour of zinc and magnesium sulphate heptahydrates;Journal of Applied Chemistry;2007-05-04

4. The Topley–Smith Effect;Hot Topics in Thermal Analysis and Calorimetry;2007

5. Decomposition Mechanism;Hot Topics in Thermal Analysis and Calorimetry;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3