Plant glutathione transferases — a decade falls short

Author:

Basantani Mahesh1,Srivastava Alka1

Affiliation:

1. In Vitro Culture and Plant Genetics Unit, Department of Botany, Lucknow University, Lucknow, India.

Abstract

The glutathione transferase (GST) superfamily in plants has been subdivided into eight classes, seven of which (phi, tau, zeta, theta, lambda, dehydroascorbate reductase, and tetrachlorohydroquinone dehalogenase) are soluble and one is microsomal. Since their identification in plants in 1970, these enzymes have been well established as phase II detoxification enzymes that perform several other essential functions in plant growth and development. These enzymes catalyze nucleophilic conjugation of the reduced form of the tripeptide glutathione to a wide variety of hydrophobic, electrophilic, and usually cytotoxic substrates. In plants, the conjugated product is either sequestered in the vacuole or transferred to the apoplast. The GSTs of phi and tau classes, which are plant-specific and the most abundant, are chiefly involved in xenobiotic metabolism. Zeta- and theta-class GSTs have very restricted activities towards xenobiotics. Theta-class GSTs are glutathione peroxidases and are involved in oxidative-stress metabolism, whereas zeta-class GSTs act as glutathione-dependent isomerases and catalyze the glutathione-dependent conversion of maleylacetoacetate to fumarylacetoacetate. Zeta-class GSTs participate in tyrosine catabolism. Dehydroascorbate reductase- and lambda-class GSTs function as thioltransferases. Microsomal-class GSTs are members of the MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) superfamily. A plethora of studies utilizing both proteomics and genomics approaches have greatly helped in revealing the functional diversity exhibited by these enzymes. The three-dimensional structure of some of the members of the family has been described and this has helped in elucidating the mechanism of action and active-site amino-acid residues of these enzymes. Although a large amount of information is available on this complex enzyme superfamily, more research is necessary to answer additional questions such as, why are phi- and tau-class GSTs more abundant than GSTs from other classes? What functions do phi- and tau-class GSTs perform in plant taxa other than angiosperms? Do more GST classes exist? Future studies on GSTs should focus on these aspects.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3