Abstract
Glycine-2-C14was administered to 83-day-old wheat plants. The plants were allowed to mature fully and the carbon-14 distribution was then examined. About 80% of the radioactivity injected was recovered in the upper portions of the plant, the kernels themselves containing 66%. Proteins had a higher specific activity than other kernel constituents but the starch contained about one-half the total carbon-14 of the kernels. Glycine and serine were by far the most radioactive amino acids of the gluten protein. They had specific activities of 2720 and 2900 μc/mole C respectively while alanine, histidine, methionine, glutamic acid, and proline had specific activities ranging from 150 to 300 μc/mole C. The specific activities of carbons 1 and 2 of glycine recovered from the protein were 550 and 4900 μc/mole respectively while the specific activities of carbons 1, 2, and 3 of serine were 490, 4300, and 3100 μc/mole respectively. The results confirm previous views regarding extensive interconversion of glycine and serine in maturing wheat. Extensive labelling in carbon 3 of serine is interpreted as evidence that glycine is degraded to "active formaldehyde" and carbon dioxide.
Publisher
Canadian Science Publishing