The level structure of 142Pr deduced from the 141Pr(n,γ)142Pr reaction

Author:

Kennett T. J.,Prestwich W. V.,Islam M. A.

Abstract

A study of the low lying levels of 142Pr observed via the 141Pr(n,γ)142Pr reaction has revealed this nuclide to possess a much more complex structure than previously reported. Acquiring high precision spectra, which readily permitted detection of transitions with intensities greater than 0.01% and employing deconvolution techniques to achieve an effective resolution of 1 keV, resulted in identification of 455 transitions in the range of excitation energy 0 to 3500 keV. A constant temperature level density model, for which losses due to intensity and resolution effects are included, was used to describe the present results. Computations were undertaken to explore the validity of the assumptions made regarding the primary or secondary nature of the observed transitions. The models used to describe the spacing and intensity distributions in order to account for losses were verified through an examination of the experimental data. In addition, consideration of the degree of E1 and M1 contributions has been included. A high degree of self consistency of all these factors is demonstrated. An examination of the reduced radiative widths strongly suggests the influence of the giant dipole resonance. The precision of the energy measurements permitted the derivation of level energies with an average uncertainty of less than 100 eV. In addition to obtaining a neutron separation energy of 5843.14(10) keV for 142Pr, precise values were determined for nuclides 144Nd, 156Gd, 158Gd, and 208Pb.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3