Oxidative stress does not differ in primary dermal fibroblasts isolated from fast-growing and control-growing Japanese Quail (Coturnix japonica)

Author:

Beattie Ursula Konstantin11,Jimenez Ana Gabriela11

Affiliation:

1. Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA.

Abstract

Growth rate is a key life-history trait that influences fitness and shapes the physiology of organisms. Additionally, faster growing individuals of the same species seem to be burdened with higher whole-animal metabolism and higher cellular turnover rates, which may lead to increases in oxidative stress, though this fact remains controversial within the literature. Aerobic organisms are subjected to metabolic by-products known as reactive oxygen species (ROS), which can wreak havoc on macromolecules, such as structurally altering proteins and inducing mutations in DNA, among others. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. We used primary fibroblast cells isolated from control-growing and fast-growing Japanese Quail (Coturnix japonica Temminck and Schlegel, 1849) as a study model for the effects of differing growth rates on oxidative stress. We measured reduced glutathione (GSH) concentration, ROS production, mitochondrial content, and lipid peroxidation (LPO) damage. We found no significant differences in the four parameters measured between control-growing and fast-growing Quail. However, we found that in fast-growing Quail, GSH correlated with LPO damage and mitochondrial content, and LPO damage positively correlated with mitochondrial content, whereas control-growing Quail only showed positive relationships between LPO damage and ROS production.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Role of Primary Fibroblast Cells in Comparative Physiology: A Historical and Contemporary Overview;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3