Resource selection by coyotes (Canis latrans) in a longleaf pine (Pinus palustris) ecosystem: effects of anthropogenic fires and landscape features

Author:

Stevenson E.R.1,Lashley M.A.1,Chitwood M.C.1,Garabedian J.E.11,Swingen M.B.1,DePerno C.S.11,Moorman C.E.11

Affiliation:

1. Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27606, USA.

Abstract

Prescribed fire is used to restore and maintain fire-dependent forest communities. Because fire affects food and cover resources, fire-mediated resource selection has been documented for many wildlife species. The first step in understanding these interactions is to understand resource selection of the predators in a fire-maintained system. We attached GPS radio collars to 27 coyotes (Canis latrans Say, 1823) and examined resource selection relative to fire-maintained vegetation types, years since fire, anthropogenic features that facilitate prescribed burning, and other landscape features likely to affect coyote resource selection. Coyote home ranges were characterized by more open vegetation types and more recently burned forest (i.e., burned 0–1 year prior) than available on the study area. Within their home ranges, coyotes avoided areas close to densely vegetated drainages and paved roads. Coyote selection of more recently burned forest likely was in response to greater prey density or increased ability to detect prey soon after vegetation cover was reduced by fires; similarly, coyotes likely avoided drainages due to decreased hunting efficiency. Coyote resource selection was linked to prescribed fire, suggesting the interaction between fire and coyotes may influence ecosystem function in fire-dependent forests.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3