Affiliation:
1. Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
Abstract
We explored how the flattened and rounded pectoral disc of the ocellate river stingray (Potamotrygon motoro (Müller and Henle, 1841)) enables them to use the benthic plane during fast-start escape. Escape responses were elicited via prodding different locations around the pectoral disc and were recorded using video. Modulation of pectoral-fin movements that power swimming enabled omnidirectional escape across the substrate, with similar performance in all directions of escape. Hence, translation of the body did not necessarily have to follow the orientation of the head, overcoming the constraint of a rigid body axis. An increase in prod speed was associated with an increase in initial translational speed and acceleration away from the prod. As prod location shifted towards the snout, yaw rotation increased, eventually reorienting the fish into a forward swimming position away from the prod. Furthermore, P. motoro yawed with essentially zero turning radius, allowing reorientation of the head with simultaneous rapid translation away from the prod, and yaw rate during escape was substantially greater than reported during routine swimming for stingrays. We conclude that stingrays employ a distinctive approach to escape along the substrate, which we have termed disc starts, that results in effective manoeuvrability across the benthic environment despite limited longitudinal flexibility of the body and that challenges the concept of manoeuvrability typically used for fishes.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献