Author:
Desautels M.,Michalska E.,Mozaffari B.
Abstract
The lysosomal proteolytic capacity of mouse brown adipose tissue (BAT) and its role during fasting were evaluated. The specific activities of acid phosphatase and cathepsins B, D, H, and L were measured in BAT of mice acclimated at 33, 21, and 4 °C and in BAT undergoing different rates of protein loss during a 24- to 48-h fast. The specific activities of lysosomal proteases in BAT did not vary with the acclimation status of the animals. Mice acclimated at 33 °C showed no significant atrophy of BAT after a fast. In mice kept at 21 °C, protein loss from BAT was observed after a fast without change in tissue DNA content. Protein loss from BAT was partially reduced by injection of the acidotropic agent chloroquine. Furthermore, tyrosine release from BAT during fasting was also reduced by injections of chloroquine or leupeptin, a thiol-protease inhibitor. Tyrosine release from BAT was maximum within 24 h and returned to prefast values by 36 h, suggesting rapid activation followed by inhibition of the tissue proteolytic activity. However, there was no change in acid protease specific activities, suggesting that these enzymes were not limiting for protein degradation. When cold-acclimated mice were fasted at 21 °C, BAT protein loss was markedly enhanced and increases in cathepsin D and L activities were observed, but there was no change in cathepsin B and H and acid phosphatase specific activities. These results indicate that BAT contains an important lysosomal proteolytic pathway that is involved in the rapid reduction of the tissue thermogenic capacity during a fast.Key words: temperature regulation, protein degradation, lysosomes, brown fat.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献