The tonalite–trondhjemite–granodiorite (TTG) to granodiorite–granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province

Author:

Frost Carol D,Frost B Ronald,Kirkwood Robert,Chamberlain Kevin R

Abstract

The 2.95–2.82 Ga quartzofeldspathic gneisses and granitoids in the Bighorn, western Owl Creek, and northeastern Wind River uplifts in the central Wyoming Province include low-K tonalite–trondhjemite–granodiorite (TTG) and high-K granodiorite–granite (GG) rocks. Both types of granitoids were intruded contemporaneously, although TTGs are more abundant in the older gneisses. The TTG suite consists of calcic to marginally calc-alkalic rocks that straddle the boundaries between metaluminous and peraluminous and between ferroan and magnesian compositions. Rare-earth element (REE) patterns of these rocks may be highly fractionated with low heavy rare-earth element (HREE) contents and modest to absent Eu anomalies but may also be less strongly HREE depleted. These rocks do not represent first-generation continental crust: most have unradiogenic Nd and radiogenic 207Pb/204Pb isotopic compositions that require the incorporation of isotopically evolved sources. The GG suite has compositions that are transitional between Archean TTG and modern, continental margin calc-alkalic rocks. The GG suite is characterized by higher alkali contents relative to CaO than the TTG suite and higher K/Na ratios but exhibits a similar range in REE patterns. The Nd, Sr, and Pb isotopic compositions of the GG suite are slightly less variable but lie within the range of those of the TTG suite. We interpret them as having a source similar to that of the TTG, perhaps forming by partial melting of preexisting TTG. The shift from TTG-dominated to GG-dominated continental crust was a gradual transition that took place over several hundred million years. Clearly subduction-related calc-alkalic magmatism is not recognized in the Wyoming Province prior to 2.67 Ga.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3