Author:
Freeman H. J.,Johnston G.,Quamme G. A.
Abstract
Differentiation and maturation of enterocytes occur with migration from the crypt to villus compartments. To investigate the effect of epithelial cell differentiation on sodium-dependent D-glucose transport, brush-border membrane vesicles were prepared from small intestinal epithelial cell suspensions selectively isolated from villus and crypt populations. Enterocytes were isolated with a morphologically monitored sequential cell dissociation method. Thymidine kinase, sucrase, and alkaline phosphatase activities were measured as differentiation markers of specific cell populations. Brush-border membrane vesicles were purified and their kinetic characteristics defined with a rapid filtration method under conditions of a zero-trans, 100 mM cis-NaSCN gradient. Typical "overshoot" phenomena characteristic of sodium D-glucose cotransport were observed for both villus (five- to eight-fold equilibrium values) and crypt brush-border membrane vesicles (two- to four-fold equilibrium values). Kinetics analyses of the initial D-glucose flux in brush-border membrane vesicles suggested the presence of at least two sodium-dependent D-glucose carriers in the villus and only a single carrier in the crypt compartments. These data indicate that sodium D-glucose cotransport occurs in brush-border membranes of both villus and crypt populations. Moreover, quantitative and qualitative differences between these two membrane populations suggest that epithelial D-glucose transport processes are differentiation dependent and reflect the degree of enterocyte development.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献