Author:
Mason Glenn S,Cumberbatch Michael J,Hill Raymond G,Rupniak Nadia MJ
Abstract
There are two bradykinin receptor subtypes, designated B1 and B2. Whilst both have been implicated in nociception, it is believed that there is a low level of constitutive expression of B1 receptors and that their expression is induced by inflammation or tissue damage. The present study investigated the role of B1 receptors in spinal nociceptive processing using an in vivo electrophysiological assay in decerebrate, spinalized rabbits, a species that shares close B1 receptor homology with the human receptor. Inflammation was induced in the paw by an injection of complete Freund's adjuvant at least 1 h before recording single motor unit activity of the semitendinous/biceps femoris muscle in response to a noxious pinch of the foot. Control animals received an intraplantar injection of saline. The peptide B1 receptor antagonist B9858 was administered i.v. and caused dose-dependent and complete inhibition of the nociceptive spinal reflex (ID50 = 1 mg·kg1). In control animals without paw inflammation, B9858 had no effect. These findings are consistent with other evidence that peptide B1 receptor antagonists inhibit spinal nociceptive reflexes only after induction of B1 receptors by inflammation and support the potential therapeutic utility of B1 receptor antagonists as analgesic and anti-inflammatory drugs.Key words: bradykinin B1 receptor, inflammation, spinal reflex, rabbit.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献