Affiliation:
1. Department of Chemistry, University of Alberta, 11227 SK Drive N.W., Edmonton, AB T6G 2G2, Canada.
Abstract
Presented here is a solid-state NMR investigation of the so-called “colossal expansion” material, Ag3Co(CN)6, a compound that exhibits some of the largest positive and negative thermal expansion properties reported. This study explores the 13C, 15N, and 59Co NMR properties of this material at room temperature and at variable temperatures with the goal of probing the effects of this colossal expansion behaviour on these properties. We found that the flexible nature of the crystal framework leads to a distribution of electric field gradients, and that, oddly enough, no strong correlation is observed between the NMR parameters of Ag3Co(CN)6 and its colossal expansion nature. The 59Co isotropic chemical shift increased and the 59Co nuclear quadrupolar coupling constant decreased with increasing temperature, but neither of these relationships were extraordinary when compared to other octahedral Co(III) complexes. The link between the colossal expansion and the NMR properties of Ag3Co(CN)6 may be the distribution of lattice parameters and hence unusually broad features in the 59Co NMR spectra. The high order of symmetry at the cobalt site resulted in a small quadrupolar coupling constant less than 1 MHz in magnitude. We also observed a |1J(107/109Ag,15N)| value of 96 Hz, the largest 107/109Ag–15N coupling constant reported to date.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献