A solid-state NMR investigation of the colossal expansion material, Ag3Co(CN)6

Author:

Feland Brett C.1,Bernard Guy M.1,Wasylishen Roderick E.1

Affiliation:

1. Department of Chemistry, University of Alberta, 11227 SK Drive N.W., Edmonton, AB T6G 2G2, Canada.

Abstract

Presented here is a solid-state NMR investigation of the so-called “colossal expansion” material, Ag3Co(CN)6, a compound that exhibits some of the largest positive and negative thermal expansion properties reported. This study explores the 13C, 15N, and 59Co NMR properties of this material at room temperature and at variable temperatures with the goal of probing the effects of this colossal expansion behaviour on these properties. We found that the flexible nature of the crystal framework leads to a distribution of electric field gradients, and that, oddly enough, no strong correlation is observed between the NMR parameters of Ag3Co(CN)6 and its colossal expansion nature. The 59Co isotropic chemical shift increased and the 59Co nuclear quadrupolar coupling constant decreased with increasing temperature, but neither of these relationships were extraordinary when compared to other octahedral Co(III) complexes. The link between the colossal expansion and the NMR properties of Ag3Co(CN)6 may be the distribution of lattice parameters and hence unusually broad features in the 59Co NMR spectra. The high order of symmetry at the cobalt site resulted in a small quadrupolar coupling constant less than 1 MHz in magnitude. We also observed a |1J(107/109Ag,15N)| value of 96 Hz, the largest 107/109Ag–15N coupling constant reported to date.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei;Progress in Nuclear Magnetic Resonance Spectroscopy;2018-12

2. Structural Insights from59Co Solid-State NMR Experiments on Organocobalt(I) Catalysts;ChemPhysChem;2017-12-21

3. Recent NMR developments applied to organic–inorganic materials;Progress in Nuclear Magnetic Resonance Spectroscopy;2014-02

4. Chapter 7. Solid state NMR spectroscopy;Nuclear Magnetic Resonance;2014

5. Chapter 3. Applications of nuclear shielding;Nuclear Magnetic Resonance;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3