Enhanced removal of Eriochrome Black T in wastewater by zirconium-based MOF/graphene oxide

Author:

Bu Jiaqi1,Yuan Lu12345,Ren Yanling1,Lv Yuexin1,Meng Yong12345,Peng Xin12345

Affiliation:

1. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China.

2. National & Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Changsha 410081, P.R. China.

3. Key Laboratory of Sustainable Resources Processing and Advanced Materials, Hunan Province College, Changsha 410081, P.R. China.

4. Research Center of Resource Recycling Complex Technology, Hunan Normal University, Changsha 410081, P.R. China.

5. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Ministry of Education, Changsha 410081, P.R. China.

Abstract

The zirconium-based MOF/graphene oxide (UiO-66-NH2/GO) composites were prepared by ultrasonic dispersing different amounts of graphene oxide (GO) in a well-dissolved zirconium tetrachloride/H2BDC-NH2 mixture, obtaining 2 wt% (UiO-66-NH2/GO-1), 5 wt% (UiO-66-NH2/GO-2), and 10 wt% (UiO-66-NH2/GO-3) GO composites. The products were characterized by XRD, FTIR, SEM, BET, Raman, UV, XPS, and Zeta potential. Adsorption experiments on simulated Eriochrome Black T (EBT) printing and dyeing wastewater were carried out using UiO-66-NH2/GO, and the optimal conditions for adsorption were obtained by exploring the effects of initial EBT concentration, time, pH, and salt ionic strength. Adsorption isotherms, kinetics, mechanism, and regeneration were also researched. The adsorption behavior was consistent with the Langmuir isotherm and fully compliant with pseudo secondary dynamics model. The adsorption capacity of UiO-66-NH2/GO-2 was found to be the highest of the three products, which was 263.158 mg/g. Therefore, the UiO-66-NH2/GO-2 composite was considered to be an excellent adsorbent for the adsorption of EBT from organic dye wastewater.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3