Affiliation:
1. Department of Chemistry, Kansas State University, Manhattan, KS 66506-0401, USA.
Abstract
Co-crystallization technology was employed as a way of solving two problems hampering the usefulness of 4,4′,5,5′-tetranitro-2,2′biimidazole (TNBI) as a viable energetic material, namely hygroscopicity and corrosiveness (high acidity). Co-crystal screening was carried out with 15 co-formers containing nitrogen or oxygen as the primary hydrogen-bond acceptor site. Formation of co-crystals was confirmed by IR spectroscopy and DSC, and suitable co-crystals were then analysed via single-crystal X-ray diffraction. In each case, the formation of a co-crystal was driven by the formation of multiple N–H···N or N–H···O hydrogen bonds between TNBI and the co-former. The N-oxide based acceptors produce better energetic materials due to a more optimal oxygen balance. Hygroscopicity evaluations and corrosion tests revealed that the unavailability of N–H protons in the co-crystals of TNBI reduce hygroscopicity and suppress the chemical acidity of the free parent compound thereby making it substantially easier to handle, store, and transport.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献