Photochemical reaction kinetics and mechanism of bisphenol A with K2S2O8 in aqueous solution: a laser flash photolysis study

Author:

Zhu Yongchao123,Zhu Mengyu123,Xie Jingjing13,Hu Yadong123,Liu Ying123,Zhu Chengzhu123

Affiliation:

1. School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China.

2. Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China.

3. Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China.

Abstract

The photochemical reaction kinetics and mechanism of bisphenol A (BPA) with potassium persulfate (K2S2O8) were investigated by using 266 nm laser flash photolysis and gas chromatography mass spectrum (GC-MS) technique. Sulfate radical (SO4•−), generated upon K2S2O8 photolysis, reacted with BPA with the overall rate constant of (1.61 ± 0.15) × 109 L mol−1 s−1, and two main reaction mechanisms were involved. One was addition channel to generate BPA–SO4•− adduct with a specific second-order rate constant of (1.09 ± 0.15) × 109 L mol−1 s−1. Molecular oxygen was involved in the decay of the BPA–SO4•− adduct with a rate constant of (1.28 ± 0.14) × 108 L mol−1 s−1. Another channel was the formation of BPA’s phenoxyl radical, likely derived from a deprotonation of the cation radical (BPA•+) generated from single electron transfer reactions. The specific rate constant of BPA’s phenoxyl radical formation was determined to be (6.16 ± 0.08) × 108 L mol−1 s−1. The overall rate constant was in line with the sum of aforementioned two specific rate constants for two main reaction channels. By comparing these rate constants, it was indicated that SO4•− addition channel accounted for ∼65% (1.09/1.61) to the overall reaction, and phenoxyl radical formation accounted for only ∼35% (0.62/1.61). The transformation products of BPA were identified by using GC-MS including 4-isopropylphenol, 4-isopropenylphenol, and 2,4-di-tert-butylphenol, and the reaction mechanism was proposed. These results may provide microscopic kinetics and mechanism information on BPA degradation using SO4•−-based advanced oxidation processes.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3