Affiliation:
1. Institute for Computation in Molecular and Materials Science, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Abstract
The structural, electronic, and absorption properties of 3,5-diamino-1H-1,2,4-triazole (DAT) and 5,5′-bis(trinitromethyl)-3,3′-azo-1H-1,2,4-triazole (BTNAT) cocrystal under hydrostatic compression of 0–100 GPa were investigated by using periodic density functional theory with dispersion correction (DFT-D). The results indicate that a structural transformation occurred at 25 GPa. The structural transformation makes the positions of the molecules rearrange in the cocrystal and improves the stability and planarity. An analysis of the band gap and density of states indicates that the DAT/BTNAT cocrystal becomes more sensitive under compression. The absorption spectra illustrate that the DAT/BTNAT cocrystal has relatively high optical activity with the increasing pressure. Our work may offer some valuable information for understanding the behavior of energetic cocrystals under high pressure.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献