Pyridazinones from maleic hydrazide: a new substrate for the Mitsunobu reaction

Author:

Rodriguez Christina11,Kiriakopoulos Rachel11,Hiscock Lana K.11,Schroeder Zachary11,Dawe Louise N.11

Affiliation:

1. Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.

Abstract

Crystal engineered organic frameworks assembled using hydrogen bonding are known, and examples constructed from hydroxypyridine/pyridone as the dominant source of hydrogen bonding have been reported. Less explored are analogous systems based on maleic hydrazide. Herein, a two-step route (Mitsunobu followed by Schiff base reactions) to asymmetrically substituted pyridazinones from maleic hydrazide (step 1) is reported with 2-, 3-, or 4-pyridinecarboxaldehyde (step 2). Upon reaction with 4-pyridinecarboxaldehyde, single crystals suitable for analysis via X-ray diffraction were obtained. Careful examination of this solid state structure and comparison with a large number of related structures in the Cambridge Structural Database revealed a pyridazinone (vs. pyridazinol) core and persistent [Formula: see text] “head-to-tail” hydrogen bonded dimers. Although these pyridazinones were originally considered suitable for use as ligands for metal cation coordination, challenges in achieving this outcome were encountered.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3